www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - emp. Verteilungsfkt.
emp. Verteilungsfkt. < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

emp. Verteilungsfkt.: zwei Eigenschaften
Status: (Frage) beantwortet Status 
Datum: 15:54 Sa 26.11.2011
Autor: dennis2

Aufgabe
Seien [mm] $X_1,...,X_n$ [/mm] unabhängig identisch gemäß $F$ verteilt. Bezeichne

[mm] $\hat F^{(n)}(a)=\frac{1}{n}\sum_{i=1}^{n}\chi_{(-\infty,a]}(X_i)$ [/mm]

die empirische Verteilungsfunktion.

Zeige:

(1) [mm] $P\left(\hat F^{(n)}(a)=\frac{m}{n}\right)=\binom{n}{m}(F(a))^{m}(1-F(a))^{n-m}, [/mm] m=0,...,n$

(2) [mm] $\hat F^{(n)}(a)$ [/mm] ist ein stark konsistenter Schätzer für $F(a)$.

Hallo und einen schönen Samstag-Nachmittag! Ich habe mich mal an den Beweis der obigen Aufgabe gewagt und ich würde mich freuen, wenn mir jemand ein Feedback geben würde!

Beweis:

(1)

(*) [mm] $\hat F^{(n)}(a)=\frac{m}{n}\Leftrightarrow n\cdot \hat F^{(n)}(a)=m$ [/mm]

(**) [mm] $\hat F^{(n)}(a,\omega)=\frac{1}{n}\left\vert\left\{i: 1\leq i\leq n, \underbrace{X_i(\omega)\leq a}_{=F(a)}\right\}\right\vert$ [/mm]

------

Wegen (*) und (**) kann man die Zufallsvariable [mm] $n\cdot \hat F^{(n)}(a)$ [/mm] als die Anzahl der Erfolge beim n-fachen Münzwurf auffassen - mit den (nach Voraussetzung) identischen Erfolgswahrscheinlichkeiten [mm] $c_1=...=c_n=F(a)$, [/mm] das heißt:

[mm] $n\cdot\hat F^{(n)}(a)=\left\vert\left\{i: 1\leq i\leq n, F(a)\right\}\right\vert=m\in\left\{0,...,n\right\}$ [/mm]

und daher

[mm] $P\left(n\cdot\hat F^{(n)}(a)=m\right)=\binom{n}{m}(F(a))^m(1-F(a))^{n-m}$, [/mm] das heißt, daß [mm] $n\cdot\hat F^{(n)}(a)$ [/mm] binomialverteilt ist zu den Parametern $n$ und $p=F(a)$.

Dann nach (*) auch [mm] $\hat F^{(n)}(a)$. [/mm]


(2)

Zu zeigen ist, daß [mm] $\hat F^{(n)}(a)\underrightarrow{f.s.} [/mm] F(a)$ für [mm] $n\to\infty$. [/mm]

----

Da man [mm] $n\cdot\hat F^{(n)}(a)$ [/mm] (wie oben beschrieben) als Erfolgsanzahl beim n-fachen Münzwurf mit identischen Erfolgswahrscheinlichkeiten betrachten kann, ist [mm] $n\cdot\hat F^{(n)}(a)$ [/mm] die Summe von $n$ unabhängigen und identisch (bernouilli-) verteilten Zufallsvariablen. Daher ergibt sich die Behauptung aus dem Gesetz der großen Zahlen wie folgt:

[mm] $\hat F^{(n)}(a)=\frac{1}{n}\cdot n\cdot \hat F^{(n)}(a)=\frac{1}{n}\sum_{i=1}^{n}\hat F^{(n)}(a)\underrightarrow{f.s.}E\left(\hat F^{(n)}(a)\right)=F(a)$ [/mm]

mit [mm] $\hat F^{(n)}(a)$ [/mm] paarweise unabhängig, identisch verteilt in [mm] $\mathcal{L}^1$. [/mm]

(Das heißt: Die Voraussetzungen des starken Gesetzes der großen Zahlen sind erfüllt.)

[mm] $\Box$ [/mm]




Vielen Dank für's Durchlesen und ich freue mich auf Reaktionen.


Dennis

        
Bezug
emp. Verteilungsfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 So 27.11.2011
Autor: vivo

Hallo,

ich weiß teilweise nicht genau was du meinst. Deshalb hier eine leicht andere Version:

[mm]P(X_i \le x)=F(x)[/mm]

setzte:

[mm]Y_i(x)=\begin{cases} 1, & \mbox{ falls } X_i \le x \\ 0, & \mbox{ falls } X_i > x \end{cases}[/mm]

so ist

[mm]P(Y_i(x)=1)=F(x)[/mm]

[mm]P(Y_i(x)=0)=1-F(x)[/mm]

offenbar ist ja

[mm]n \hat{F}^{(n)}(x)=\sum_{i=1}^{n}Y_i(x)[/mm]

die Anzahl der Beobachtungen die [mm]x[/mm] nicht übertreffen

Da die [mm]Y_i(x)[/mm] stochstisch unabhängig bernoulliverteilt mit Parameter [mm]p=F(x)[/mm] sind folgt

[mm]n\hat{F}^{(n)}(x) \sim Bi(n, F(x))[/mm]

also die Behauptung.

[mm]E(\hat{F}^{(n)}(x))=F(x)[/mm]

[mm]V(\hat{F}^{(n)}(x))=\frac{1}{n}F(x)(1-F(x))[/mm]

wegen Verteilung.

Also Erwartungstreu und mit wachsendem [mm]n[/mm] konvergiert Varianz gegen Null.

Also konsisten im quadratischen Mittel (stark konsinstent). Daraus folgt auch schwach konsistent (Konvergenz in Wahrscheinlichkeit).

Es liegt sogar eine gleichmäßige Konvergenz vor, was über den Satz von
Glivenko und Cantelli gezeigt werden kann.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de