www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - extremwertbeispiel_1
extremwertbeispiel_1 < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertbeispiel_1: Flächenberechnung
Status: (Frage) beantwortet Status 
Datum: 19:05 Mo 21.08.2006
Autor: magister

Aufgabe
Der Parabel y² = 2px ist jenes flächengrößte endliche Rechteck einzuschreiben, dessen eine Seite auf der Achsennormalen durch F liegt. Berechne seinen Flächeninhalt!

Mir ist klar, dass F der Brennpunkt sein muß.
Mir ist klar, dass die Parabel in 1. Hauptlage liegt.
Mir ist klar, dass die Achsennormale duch F eine Gerade parallel zu y ist ?!

Sind obige Annahmen richtig und handelt es sich um das Rechteck zwischen Scheitel S(0/0) und Fußpunkt?? Wie kriege ich den Fußpunkt?

Bitte um HIlfe

Vielen Dank im voraus

        
Bezug
extremwertbeispiel_1: Antwort
Status: (Antwort) fertig Status 
Datum: 02:15 Mi 23.08.2006
Autor: ardik

Hallo magister,

>  Mir ist klar, dass F der Brennpunkt sein muß.

Davon gehe ich auch aus.

>  Mir ist klar, dass die Parabel in 1. Hauptlage liegt.

ja.

>  Mir ist klar, dass die Achsennormale duch F eine Gerade parallel zu y ist ?!

Ja. Korrekter formuliert: zur y-Achse. Ähnlich wie bei waagerechten Geraden (z.B. $y=5$) schreibt man Senkrechte z.B. als $x=4$.
Wenn der Brennpunkt F die Koordinaten [mm] $(\bruch{p}{2}|0)$ [/mm] hat, also die Gerade [mm] $x=\bruch{p}{2}$. [/mm]

Für z.B. $p=2$ also [mm] $y^2 [/mm] = 4*x$ sähe das dann etwa so aus:
[Dateianhang nicht öffentlich]
[mm] $\Rightarrow [/mm] F\ (1|0)$

> Sind obige Annahmen richtig und handelt es sich um das
> Rechteck zwischen Scheitel S(0/0) und Fußpunkt?? Wie kriege
> ich den Fußpunkt?

Was meinst Du mit "Fußpunkt"?

Der Brennpunkt F ergibt sich daraus, dass er definitionsgemäß vom Scheitelpunkt die Entfernung [mm] $\bruch{p}{2}$ [/mm] hat.

Die linken Ecken des Rechteckes (in der Zeichnung blau & grün eingerahmt) liegen auf der Parabel, haben also die Koordinaten [mm] $(x|\pm\wurzel{2px})$ [/mm] (im Beispiel $(0,25|1)$). Das Rechteck hat also die Höhe [mm] $2*\wurzel{2px}$ [/mm] und die Breite [mm] $\bruch{p}{2} [/mm] - x$, da die Breite sich ja als Differenz aus den x-Koordinaten der senkrechten Gerade und der linken Eckpunkte ergibt.
Im Extremfall, wenn die Ecken ganz links im Scheitelpunkt zusammenrutschen, erhält man ein "Rechteck" mit Flächeninhalt Null. Wenn die Ecken dann nach rechts auseinanderutschen, wird die Fläche des Rechteckes zunächst größer, dann wieder kleiner bis die Ecken direkt ober-/unterhalb des Brennpunktes liegen. Nun also wieder Flächeninhalt Null. Wenn die Ecken jetzt weiter nach rechts rutschen, wird der Flächeninhalt nun immer größer bis ins Unendliche. Das lässt sich freilich nicht mehr berechnen. Gesucht ist also offenkundig das größtmögliche Rechteck links vom Brennpunkt. Darauf bezieht sich meines Erachtens jene Bemerkung "flächengrößte endliche...".

Die allgmeine Formel für den Flächeninhalt dieses Rechteckes (in Abhängigkeit z.B. von der x-Koordinate der linken Ecken) solltest Du jetzt aufstellen können.
Kommst Du dann auch weiter, bei der Ermittlung des Maximums dafür (klassische Extremwertaufgabe: 1. Ableitung etc.)?

Schöne Grüße,
ardik

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de