www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - ggt(f,g) = h unlösbar
ggt(f,g) = h unlösbar < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggt(f,g) = h unlösbar: wenn h nicht € ggt(f,g)
Status: (Frage) überfällig Status 
Datum: 20:58 Do 25.09.2008
Autor: Speyer

Aufgabe
Erweiterter Euklidischer Algorithmus über [mm] Z_3[x]. [/mm]
a) Löse fu + gv = ggt(f,g) zu [mm] f=x^5 [/mm] + 1 und [mm] g=x^2 [/mm] + 1 für u,v € [mm] Z_3[x] [/mm]
b) Zeige, dass fu + gv = h für h [mm] \not\in [/mm] ggt(f,g) unlösbar ist.

a) ich habe hier für den ggt(f,g) = 2 erhalten
b) hier bräuchte ich noch hilfe für den Beweis.
Soweit ich es verstanden habe, muss ich nur eine Richtung zeigen, nämlich:
h [mm] \not\in [/mm] ggt(f,g) => fu + gv = h ist unlösbar.

Was ich bereits gefunden habe:
h [mm] \not\in [/mm] ggt(f,g) [mm] \Rightarrow [/mm] h [mm] \not\in f\IZ [/mm] + [mm] g\IZ \Rightarrow [/mm] h [mm] \not\in [/mm] c * ggt(f,g))

Ich glaub mir fehlt einfach nur das letzte kleine Stück, oder?


        
Bezug
ggt(f,g) = h unlösbar: Hinweise bzw. Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Fr 26.09.2008
Autor: statler

Hallo Tobias!

> Erweiterter Euklidischer Algorithmus über [mm]Z_3[x].[/mm]
>  a) Löse fu + gv = ggt(f,g) zu [mm]f=x^5[/mm] + 1 und [mm]g=x^2[/mm] + 1 für
> u,v € [mm]Z_3[x][/mm]
>  b) Zeige, dass fu + gv = h für h [mm]\not\in[/mm] ggt(f,g) unlösbar
> ist.

Ich vermisse hier etwas die sprachliche Präzision. Nach der Schreibweise in b) ist ggT(f,g) eine Menge.

>  a) ich habe hier für den ggt(f,g) = 2 erhalten

Wenn ggT(f,g) eine Menge ist, kann das im strengen Sinne nicht richtig sein. Möglicherweise - je nach eurer Def. von ggT - ist ggT(f,g) = {1, 2} gemeint. f und g sind nämlich teilerfremd. Wenn mit ggT(f,g) das von f und g erzeugte Hauptideal gemeint ist, ist ggT(f,g) = [mm]Z_{3}[x][/mm].

>  b) hier bräuchte ich noch hilfe für den Beweis.
>  Soweit ich es verstanden habe, muss ich nur eine Richtung
> zeigen, nämlich:
>  h [mm]\not\in[/mm] ggt(f,g) => fu + gv = h ist unlösbar.

Das läßt vermuten, daß ggT(f,g) das von f und g erzeugte Ideal sein soll.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
ggt(f,g) = h unlösbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 Fr 26.09.2008
Autor: ArthurDayne

Hallo,

also zumindest in meiner Vorlesung wurde ggT als Menge aller größten gemeinsamen Teiler (sind ja bis auf Einheiten eindeutig) definiert, das variiert von Dozent zu Dozent. Wir benutzten dann auch obige Schreibweise.

Also [mm] $g\in ggT(a,b)\,:\Leftrightarrow\,$(g|a [/mm] und $g|b)$ und für alle [mm] $h\in [/mm] R$ mit $h|a$ und $h|b$ gilt $h|g$.

Ich denke, hier wurde es ebenfalls so definiert.

Gruß
Johannes

Bezug
                        
Bezug
ggt(f,g) = h unlösbar: hm
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Fr 26.09.2008
Autor: statler

Hi!

> also zumindest in meiner Vorlesung wurde ggT als Menge
> aller größten gemeinsamen Teiler (sind ja bis auf Einheiten
> eindeutig) definiert, das variiert von Dozent zu Dozent.
> Wir benutzten dann auch obige Schreibweise.

Dann wäre allerdings die Beh. in Teilaufgabe b) falsch. Wenn wir in [mm] \IZ [/mm] sind, dann ist ggt(3, 5) = {1, -1}. Es gilt offenbar 5 [mm] \notin [/mm] ggT, aber 3x + 5y = 5 ist spielend lösbar.

Also immer noch Klärungsbedarf.

Gruß
Dieter


Bezug
                                
Bezug
ggt(f,g) = h unlösbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Fr 26.09.2008
Autor: ArthurDayne

Stimmt, das würde dann doch mehr für das Ideal sprechen.

Bezug
        
Bezug
ggt(f,g) = h unlösbar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Sa 27.09.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de