www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - gruppen
gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gruppen: untergruppen
Status: (Frage) beantwortet Status 
Datum: 20:58 Sa 05.01.2008
Autor: jumape

Aufgabe
Sei G eine endliche Gruppe und sei H eine nicht- leere Teilmenge von G. Zeige: H ist eine Untergruppe von
G dann und nur dann, wenn hg [mm] \in [/mm] H für alle h,g [mm] \in [/mm] H.

die Hinrichtung ist mir schon klar, aber die Rückrichtung würde doch bedeuten das für eine Untergruppe nur die Abgeschlossenheit reicht, das kommt mir ein bischen komisch vor.
Es wäre nett wenn mir da mal jemand helfen könnte.

        
Bezug
gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Sa 05.01.2008
Autor: felixf

Hallo

> Sei G eine endliche Gruppe und sei H eine nicht- leere
> Teilmenge von G. Zeige: H ist eine Untergruppe von
> G dann und nur dann, wenn hg [mm]\in[/mm] H für alle h,g [mm]\in[/mm] H.
>  die Hinrichtung ist mir schon klar, aber die Rückrichtung
> würde doch bedeuten das für eine Untergruppe nur die
> Abgeschlossenheit reicht, das kommt mir ein bischen komisch
> vor.

Du hast ja nicht nur die Abgeschlossenheit, sondern auch dass die Menge nichtleer ist. Das ist schonmal ein Unterschied ;-)

Viel wichtiger ist aber, dass die Gruppe selber endlich ist (es wuerde uebrigens auch schon reichen, wenn $H$ endlich ist). Du musst nun zeigen, dass das Neutralelement in $H$ liegt und dass zu jedem $a [mm] \in [/mm] H$ auch [mm] $a^{-1}$ [/mm] in $H$ liegt.

Dazu nimmst du dir ein $a [mm] \in [/mm] H$ und schaust dir die Potenzen $a, [mm] a^2, a^3, a^4, \dots$ [/mm] an. Die liegen ja alle in $H$. Jetzt ist $G$ (und somit insb. $H$ endlich). Kannst du damit was machen?

LG Felix


Bezug
                
Bezug
gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 06.01.2008
Autor: jumape

Vielen Dank erstmal.
Kann ich also annehmen, da die Gruppe endlich ist müssen sich beim potenzieren von a Werte wiederholen. Und damit weiß ich dann dass ich irgendwie wieder bei a gelandet bin, also ein Inverses zu a existiert, und damit dann auch das neutrale Element. Mit der Abgeschlossenheit ist dann eine Untergruppe gegeben.

Das ist doch dann die Srgumentation, oder?


Bezug
                        
Bezug
gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 So 06.01.2008
Autor: felixf

Hallo

>  Kann ich also annehmen, da die Gruppe endlich ist müssen
> sich beim potenzieren von a Werte wiederholen.

Genau.

> Und damit  weiß ich dann dass ich irgendwie wieder bei a gelandet bin,
> also ein Inverses zu a existiert, und damit dann auch das
> neutrale Element.

Vorsicht, das stimmt zwar, aber man muss es erstmal zeigen! Wenn sich die Werte wiederholen hast du erstmal nur $i, j [mm] \in \IN$ [/mm] mit $i < j$ und [mm] $a^i [/mm] = [mm] a^j$, [/mm] und a priori erstmal kein $n [mm] \in \IN$, [/mm] $a > 1$ mit [mm] $a^n [/mm] = a$. Allerdings kannst du aus $i$ und $j$ solch ein $n$ bekommen, und ein $n$ mit [mm] $a^n [/mm] = e$ und ein $n$ mit [mm] $a^n [/mm] = [mm] a^{-1}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de