www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - homomorphe Bilder der S4
homomorphe Bilder der S4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homomorphe Bilder der S4: Frage
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 04.11.2004
Autor: Shenshenmann

Ich hab hier ein Problem mit der folgenden Aufgabe:

Man gebe alle strukturell verschiedenen homomorphen Bilder der S4 an.

Wenn mir mal jemand wenigstens ein Beispiel für EIN homomorphes Bild der S4 angeben könnte wäre mir auch schon weiter geholfen... danke im Vorraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
homomorphe Bilder der S4: Defintion
Status: (Antwort) fertig Status 
Datum: 14:31 Do 04.11.2004
Autor: Gnometech

Grüße!

Ich würde ein "homomorphes" Bild einfach als das Bild unter einem Gruppenhomomorphismus auffassen.

Und "strukturell verschieden" meint wohl: nicht isomorph.

Ein mögliches Bild wäre also die [mm] $S_4$ [/mm] höchstpersönlich unter dem Homomorphismus $id: [mm] S_4 \to S_4$. [/mm] Ein anderes wäre die triviale Gruppe [mm] $\{ e \}$ [/mm] unter dem Homomorphismus, der alles auf das Einselement schickt.

Ein Tipp zu der Aufgabe: falls $f: G [mm] \to [/mm] H$ ein Gruppenhomomorphismus ist, so ist der Kern von $f$ immer ein Normalteiler in $G$ und die Quotientengruppe $G / ker(f)$ ist isomorph zum "homomorphen Bild". (Das nennt man "Homomorphisesatz".)

Das heißt, es reicht alle Quotienten zu allen Normalteilern der [mm] $S_4$ [/mm] auszurechnen. :-)

Lars

Bezug
                
Bezug
homomorphe Bilder der S4: Symbolfrage
Status: (Frage) beantwortet Status 
Datum: 19:26 Do 04.11.2004
Autor: Shenshenmann

ich hätte nur ne kleine symbolunwissenheitsfrage: was heißt  id: ... ??

(danke für die flinke antwort ;D)

mfg Shenshenmann

Bezug
                        
Bezug
homomorphe Bilder der S4: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Do 04.11.2004
Autor: Wessel

Hallo,

mit $id$ bezeichnet man kurz die "identische Abbildung" oder kurz "Identität", d.h.
$id: V [mm] \to [/mm] V, id(x)=x$

Gruß,

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de