lineare abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	  
	  
 | Aufgabe |   Gibt es eine lineare Abbildung f: [mm] R^2 \to R^2 [/mm] mit
 
 
a) f( [mm] \vektor{2 \\ 3}) [/mm] = [mm] \vektor{2 \\ 2}, [/mm] f( [mm] \vektor{2 \\ 0}) [/mm] = [mm] \vektor{1 \\ 1}, [/mm] f( [mm] \vektor{6 \\ 3}) [/mm] = [mm] \vektor{4 \\ 3}
 [/mm] 
 
b) f( [mm] \vektor{1 \\ 3}) [/mm] = [mm] \vektor{2 \\ 1}, [/mm] f( [mm] \vektor{2 \\ 0}) [/mm] = [mm] \vektor{1 \\ 1}, [/mm] f( [mm] \vektor{5 \\ 3}) [/mm] = [mm] \vektor{4 \\ 3} [/mm]  |  
  
Wie kann ich rausbekommen, ob es eine lineare Abbildung gibt? Durch Überlegung scheint ja nicht immer zu funktionieren. Da bin ich nur drauf gekommen, dass bei b) x=(x+y)/2 hinkommen könnte. Kann ich hier irgendwie ein Gleichungssystem aufstellen?
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Antwort) fertig    |    | Datum: |  19:36 Fr 20.03.2009 |    | Autor: |  pelzig |   
	   
	   Schau mal hier
 
 
Gruß, Robert
 
 
      | 
     
    
   | 
  
 
 |   
  
   |