www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - nicht offene Mengen
nicht offene Mengen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht offene Mengen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:24 Mi 03.12.2008
Autor: Walodja1987

Aufgabe
Gegeben sei die Menge M := {x ∈ R : x = [mm] m/2^{n} [/mm] für ein m ∈ Z und ein n ∈ N}. Zeigen Sie:
a) Weder M noch R \ M sind offen in R.

Ich habe noch so meine Probleme solche Beweise zu führen. Ich weiß eigentlich, was offene und nicht offene Mengen sind, aber wie kann ich das hier anwenden. Es wird behauptet, dass weder M noch das Komplement von M in R offen sind, d.h. es gibt eine Umgebung eines Punktes x, die nicht ganz in M liegt.
Hilft mir hier ein Widerspruchsbeweis weiter?

Danke für jede Antwort

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nicht offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 Do 04.12.2008
Autor: Marcel

Hallo,

> Gegeben sei die Menge M := [mm] \{x \in \IR : x = m/2^{n} \text{für ein } m \in \IZ \text{ und ein } n \in \IN\}. [/mm] Zeigen Sie:
>  a) Weder M noch R \ M sind offen in R.
>  Ich habe noch so meine Probleme solche Beweise zu führen.
> Ich weiß eigentlich, was offene und nicht offene Mengen
> sind, aber wie kann ich das hier anwenden. Es wird
> behauptet, dass weder M noch das Komplement von M in R
> offen sind, d.h. es gibt eine Umgebung eines Punktes x, die
> nicht ganz in M liegt.

nein, das findet man auch bei offenen Mengen:
$(0,1)$ ist offen, und wenn ich (bzgl. [mm] $\IR$) [/mm] eine [mm] $\,1\,$-Umgebung [/mm] um $1/2 [mm] \in [/mm] (0,1)$ lege, so liegt die auch nicht ganz in $(0,1)$.

Du musst zeigen:
Es gibt ein $x [mm] \in [/mm] M$, so dass es kein [mm] $\varepsilon [/mm] > 0$ so gibt, dass [mm] $U_\varepsilon(x)=\{y \green{\in \IR}: |x-y|< \varepsilon\} \subset [/mm] M$. Und wenn Du mal hinguckst: Offenbar gilt
$$M [mm] \subset \IQ\,.$$ [/mm]
Und in jeder [mm] $\varepsilon$-Umgebung [/mm] einer rationalen Zahl findet man eine irrationale...

> Hilft mir hier ein Widerspruchsbeweis weiter?

Sicher auch. Angenommen, $M$ wäre offen. Insbesondere müßte es dann zu [mm] $\frac{1}{2} \in [/mm] M [mm] \subset \IQ$ [/mm] ein [mm] $\varepsilon [/mm] > 0$ so geben, dass... Es kommt auf's selbe raus wie oben angedeutet.

Noch zu der Aussage, dass [mm] $\IR \setminus [/mm] M$ nicht offen ist:

Zeige einfach, dass $M$ auch nicht abgeschlossen ist. (Wäre [mm] $\IR \setminus [/mm] M$ offen, so wäre [mm] $\IR \setminus (\IR \setminus [/mm] M)=M$ abgeschlossen!)

Wir wissen, dass [mm] $(1+1/k)^k \underset{k \to \infty}{\longrightarrow} [/mm] e [mm] \in \IR \setminus M\,.$ [/mm] (Beachte wieder $M [mm] \subset \IQ$). [/mm]

Ferner:
[mm] $$\left(1+\frac{1}{k}\right)^{k}=\left(\frac{k+1}{k}\right)^k=\frac{(k+1)^k}{k^k}\,.$$ [/mm]

Setze mal [mm] $k=2^p$ [/mm] für $p [mm] \in \IN$: [/mm]
[mm] $$\frac{(k+1)^k}{k^k}=\frac{(2^p+1)^{(2^p)}}{2^{(p*2^p)}}$$ [/mm]

Also:
Für $p [mm] \in \IN$ [/mm] definiere [mm] $m:=(2^p+1)^{(2^p)} \in \IZ$ [/mm] und [mm] $n:=p*2^p \in \IN\,.$ [/mm]

Dann gilt

[mm] $$\underbrace{\frac{m}{2^n}}_{\in M}=\frac{(2^p+1)^{(2^p)}}{2^{(p*2^p)}}=\left(\frac{2^p+1}{2^p}\right)^{2p}=(1+1/(2^p))^{2p}\,.$$ [/mm]

Was passiert bei $p [mm] \to \infty$? [/mm]

Gruß,
Marcel

Bezug
                
Bezug
nicht offene Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Do 04.12.2008
Autor: Walodja1987

Super vielen Dank für die ziemlich ausführliche Beschreibung meines Vorgehens. Hat mir sehr geholfen.

Bezug
                        
Bezug
nicht offene Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:52 Do 04.12.2008
Autor: Marcel

Hallo,

> Super vielen Dank für die ziemlich ausführliche
> Beschreibung meines Vorgehens. Hat mir sehr geholfen.

entschuldige, ich hatte das [mm] $\,n\,$ [/mm] falsch notiert. Bitte nicht [mm] $\red{n:=2^{(p*2^p)}}$, [/mm] sondern [mm] $\blue{n:=p*2^p}$ [/mm] setzen (ich habe es bereits editiert).

Das [mm] $\,n\,$ [/mm] war ja im Exponent der Nenner bei der [mm] $\,2\,$ [/mm] (deswegen habe ich ja überhaupt erst den Ansatz [mm] $k=2^p$ [/mm] gewählt, damit wir da [mm] $2^{irgendwas}$ [/mm] schreiben können und dann das $irgendwas=n$ setzen können ).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de