www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - normierter raum, abgeschlossen
normierter raum, abgeschlossen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normierter raum, abgeschlossen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:01 Fr 16.06.2006
Autor: bobby

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

Ich weis nicht so recht wie ich an die folgende Aufgabe rangehen soll...

Aufgabe
Betrachte den normierten Raum $(C[0,1], || ||_{sup} \ mit \ ||f||_{sup}=sup|f(x)|$ mit $x \ aus \ [0,1]$.
Zeige, dass in diesem Raum die Menge $B_{1}(0)={f \ aus \ C[0,1] \ mit \ ||f||_{sup}\le 1$ (beschränkt und) abgeschlossen, nicht aber kompakt ist.


Kann mir da einer helfen? Ich versteh das ganze Thema mit der Kompaktheit auch nicht so richtig...

        
Bezug
normierter raum, abgeschlossen: schon wieder Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Mi 21.06.2006
Autor: just-math

Hey und hallo,

ich wollt jetzt hier schon wieder antworten, geht aber wieder nicht. Na ja egal, der Unterschied ist mir eh nicht so ganz klar.

Ich schreib mal was zu der Frage, ok ?

Also ''beschränkt'' heisst ja, dass es eine Zahl Z gibt so dass für alle f,g aus der Menge [mm] |f-g|\leq [/mm] Z gilt (ich schreib da einfach die Betragsstriche
für die Supremumsnorm, dann ist es weniger zu tippen, ok ?).

Und weil ja für alle f aus der Menge [mm] |f|\leq [/mm] 1 gilt, ist ja für  g,f [mm] \in B_1(0) |f-g|\leq |f|+|g|\leq [/mm] 2, also ist [mm] B_1(0) [/mm] beschränkt.

Die Menge ist abgeschlossen als Urbild einer abgeschlossenen Menge [0,1] unter der stetigen Abbildung  [mm] f\mapsto [/mm] |f|

(die Normbildung ist ja immer stetig, das müsst man halt noch separat zeigen).

Sie ist nicht kompakt. Kompakt hiesse ja  ''jede offene Überdeckung hat ne endliche Teilüberdeckung'', wir müssen also zum Beweis des Gegenteils
eine offene Überdeckung angeben, die sowas nicht hat (Bemerkung: Im endlichdimensionalen Fall könnt dieses Beweisvorhaben leider nicht klappen
- oder Gott sei Dank ?  ;-)  ).

Kann man denn nicht eine Familie von Zackenfunktionen definieren: Jede hat genau einen Zacken von der 0-Linie hoch zur 1 bzw runter zur -1,
und die ''Breite'' des Zackens lassen wir mit höherem Funktionsindex kleiner werden. Darum legen wir dann den offenen Ball mit radius
gleich Breite des Zackens +1 oder so, das müsst es dann doch sein, oder ? Bei nur endlich vielen Zacken können wir leicht eine weitere
Zackenfunktion konstruieren, die von allen einen Abstand nahe bei 2 hat.

Viele Grüsse

just-math



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de