www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - transformationsmatrix
transformationsmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

transformationsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 14.02.2008
Autor: mini111

hallo,

ich habe folgende aufgabe zu lösen: im [mm] \IR³ [/mm] seien die basen
A=((1,-1,2),(2,3,7),(2,3,6)) und B=((1,2,2),(-1,3,3),(-2,7,6)) gegeben.
1.berechnen sie die Transformationsmatrix T(A über B).

ich bräuchte da echt ein paar tips,ich weiß überhaupt nicht wie ich das machen soll weil ich die definition von transformaionsmatrizen noch nicht mal verstanden habe.
lieben gruß

        
Bezug
transformationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:16 Fr 15.02.2008
Autor: angela.h.b.


> ich habe folgende aufgabe zu lösen: im [mm]\IR³[/mm] seien die
> basen
>  A=((1,-1,2),(2,3,7),(2,3,6)) und
> B=((1,2,2),(-1,3,3),(-2,7,6)) gegeben.
>  1.berechnen sie die Transformationsmatrix T(A über B).
>  
> ich bräuchte da echt ein paar tips,ich weiß überhaupt nicht
> wie ich das machen soll weil ich die definition von
> transformaionsmatrizen noch nicht mal verstanden habe.

Hallo,

die Matrix  [mm] T^A_B [/mm] soll folgendes leisten:

sie soll Dir Vektoren, die Du in Koordinaten bzgl A hineinsteckst, in Koordinaten bzgl. B liefern. Der Vektor soll davei nicht verändert werden (identische Abbildung), er soll lediglich bezüglich einer anderen Basis dargestellt werden.

Durchführen tut man das wie immer, wenn man darstellende Matrizen sucht.
Man bestimmt das Bild der Basisvektoren und trägt diese in die Spalten der darstellenden Matrix ein.

Es ist

[mm] \vektor{1 \\ 0\\0}_A=\vektor{1 \\-1\\2}= [/mm] ???

Dieser Vektor ist nun als Linearkombination der Vektoren von B darzustellen, also [mm] b_i [/mm] zu berechnen mit

[mm] \vektor{1 \\ 0\\0}_A=\vektor{1 \\ -1\\2}=b_1\vektor{1 \\ 2\\2}+b_2\vektor{-1 \\ 3\\3}+b_2\vektor{-2 \\ 7\\6}= \vektor{b_1 \\ b_2\\b_3}_B [/mm]

Dieser letzte Vektor ist die erste Spalte der Trasformationsmatrix  [mm] T^A_B. [/mm]

Die anderen entsprechend.

Gruß v. Angela




Bezug
                
Bezug
transformationsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:34 Fr 15.02.2008
Autor: mini111

hallo angela!!

vielen danke dass du mir mal wieder hilfst!!ich habe das GLS ein wenig anders aufgestellt,ich hoffe das ist trotzdem richtig.
ich habe das jetzt so verstanden,dass man eine transformationsmatrix finden muss,die die basis A als linearkombination der basis B darstellt?!
also habe ich da [mm] stehn:\vektor{1 \\ -1 \\ 2}=x*\vektor{1 \\ 2 \\ 2}+y*\vektor{-1 \\ 3 \\ 3}+z*\vektor{-2 \\ 7 \\ 6} [/mm] ,das gleiche für die restlichen vektoren der basen und dann habe ich bei der 1.spalte [mm] (1,6,-3)^t [/mm] heraus.stimmt das?
lieben gruß

Bezug
                        
Bezug
transformationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Fr 15.02.2008
Autor: angela.h.b.

< ich habe das
> GLS ein wenig anders aufgestellt,ich hoffe das ist trotzdem
> richtig.

Es ist nur deshalb richtig, weil(!) Du es etwas anders aufgestellt hast. Ich hatte in meinem Post infolge schiefen Guckens einen sinnentstellenden Fehler (inzwischen korrigiert), welchen Du glücklicherweise bemerkt hast.

>  ich habe das jetzt so verstanden,dass man eine
> transformationsmatrix finden muss,die die basis A als
> linearkombination der basis B darstellt?!

Ja, die Vektoren der Basis A werden bzgl B dargestellt.

>  also habe ich da [mm]stehn:\vektor{1 \\ -1 \\ 2}=x*\vektor{1 \\ 2 \\ 2}+y*\vektor{-1 \\ 3 \\ 3}+z*\vektor{-2 \\ 7 \\ 6}[/mm]
> ,das gleiche für die restlichen vektoren der basen und dann
> habe ich bei der 1.spalte [mm](1,6,-3)^t[/mm] heraus.stimmt das?

Ja.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de