www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - vereinfachtes Newtonverfahren
vereinfachtes Newtonverfahren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vereinfachtes Newtonverfahren: Anwendung
Status: (Frage) beantwortet Status 
Datum: 20:57 Mo 10.03.2008
Autor: jumape

Aufgabe
Wie funktioniert das vereinfachte Newtonverfahren

Also meine Frage ist eigentlich schon die Aufgabe. Man wendet dieses Verfahren doch an, wenn man die Matrix nicht invertieren will und nimmt dann [mm] \overline{x} [/mm]
und [mm] x_{i+1}=x_{i}+(f'(\overline{x}))^{-1}(y-f(x_{i})) [/mm]
Aber wie wählt man da das [mm] \overline{x} [/mm] und nach welcher Variablen leitet man da ab?

        
Bezug
vereinfachtes Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 15.03.2008
Autor: leduart

Hallo
Die Frage versteh ich nicht ganz:
Das Newtonverfahren nimmt man um Nullstellen von fkt zu finden.
was du hingeschrieben hast, hat für mich nichts mit Matrizen zu tun.
Ausserdem seh ich keinen Zusammenhang mit Funktionalanalysis.
Das vereinfachte Newtonverfahren, heisst einfach, dass man über ein paar Schritte des Newtonverfahrens mit einer festen Tangentensteigung rechnet ( wohl an deiner Stelle xquer)
Kannst du sagen, was du hierbei mit Matrix willst?
Gruss leduart

Bezug
                
Bezug
vereinfachtes Newtonverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Di 18.03.2008
Autor: jumape

Aufgabe
Wie funktioniert das vereinfachte Newtonverfahren in höheren Dimensionen?

Es geht hier um das Newtonverfahren in höheren Dimensionen. Wenn man also eine Funktion von [mm] \IR [/mm] nach [mm] \IR [/mm] hat. Dann ist diese Matrix die Nablamatrix  von f. [mm] x^{i+1}=x^{i}+(nabla f(x^{i}))^{-1} (y-f(x^{i}) [/mm]

Bezug
                        
Bezug
vereinfachtes Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 18.03.2008
Autor: zahllos

Hallo,

ich bin mir nicht ganz sicher, ob ich deine Frage richtig verstanden habe:

Beim Newtonverfahren berechnet man eine lineare Approximation der Funktion f an der Stelle  [mm] x_i [/mm]  : l(x) = [mm] f(x_i)+\nabla f(x_i)(x-x_i) [/mm]
Setzt man diese gleich 0 so erhält man daraus die nächste Näherung für eine Nullstelle der Funktion f: [mm] x_{i+1}=x_i-(\nabla f(x_i))^{-1}f(x_i) [/mm]

In der Praxis berechnet man nicht [mm] (\nabla f(x_i))^{-1} [/mm] sondern setzt
[mm] x_{i+1}=x_i-\lambda_i v_i [/mm]  wobei die Schrittweite [mm] \lambda_i [/mm] eine reelle Zahl und [mm] v_i [/mm] die Lösung des linearen Gleichungssystems [mm] \nabla f(x_i) v_i [/mm] = [mm] f(x_i) [/mm] ist (zur Bestimmung einer geeigneten Schrittweite gibt es noch gesonderte Überlegungen).

Beim vereinfachten Newton-Verfahren wird die Matrix [mm] \nabla f(x_i) [/mm] nicht in jedem Schritt neu berechnet (denn das wäre sehr aufwendig), sondern über mehrere Iterationen hinweg beibehalten, oder es wird die Matrix [mm] \nabla f(x_i) [/mm]  einmal berechnet und dann mittels sogenannter Update-Formeln von Iteration zu Iteration angepasst.

Insgesamt gibt es eine Vielzahl von Verfahren, die an das Newton-Verfahren angelehnt sind.

Hilft dir das weiter?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de